

VOLUME 54, NUMBER 15 JULY 21, 1989

0 Copyright 1989 by the American Chemical Society

^N.* *Communications*

Use of Copper(I) Trifluoromethanesulfonate in β -Lactam Synthesis

Nobuhide Miyachi, Fuyuko Kanda, and Masakatsu Shibasaki*

Faculty of *Pharmaceutical Sciences, Hokkaido University, Sapporo 060, Japan*

Received March 7, 1989

Summary: β -Amino thiol esters and β -9-borabicyclo-[3.3.l]nonylamino thiol esters were converted to corresponding β -lactams in excellent yields without any epimerization by treatment with $Cu(I)$ OTf and $CaCO₃$ in refluxing toluene or dioxane. And the β -amino thiol ester **21** was transformed into the β -lactam **22** in one pot (55%) just by heating with $Cu(I)$ OTf and $CaCO₃$ in dioxane.

Sir: In recent years metal enolate-imine condensation reactions have been demonstrated to be a useful strategy for the synthesis of β -lactams. Of these reactions the boron $enolate - imine^{1a-f}$ and the $tin(II)$ enolate-imine condensation reactions^{1g-i} seem to be particularly serviceable in terms of their generality and high stereoselectivity. These coupling reactions, however, result in formation of β -amino thiol esters in good yields without producing β -lactams directly, thus requiring an additional β -lactam-forming

reaction. β -Amino thiol esters are generally converted to β -lactams by hydrolysis of a thiol ester followed by Ohno's β -lactam-forming reaction,² making those coupling reactions for β -lactam synthesis less efficient. In this paper we report a highly efficient method for the synthesis of β -lactams from either β -amino thiol esters or β -9-borabicyclo[3.3.l]nonylamino thiol esters as well as a one-pot synthesis of the β -lactam 22 from 21.

We envisioned that safe and cheap $Cu(I)OTf³$ with soft acidity would be a useful reagent for the construction of

⁽¹⁾ For boron enolates, see: **(a)** Ohtsuka, M.; Yoshida, M.; Kobayashi, S.; Ohno, M.; Umezawa, Y.; Morishima, H. *Tetrahedron Lett.* **1981,22,** 2109. (b) Iimori, T.; Shibasaki, M. *Ibid.* 1985, 26, 1523. (c) *Ibid.* 1986,
27, 2149. (d) Iimori, T.; Ishida, Y.; Shibasaki, M. *Ibid.* 1986, 27, 2153. (e)
Shibasaki, M.; Ishida, Y.; Iwasaki, G.; Iimori, T. J. Org. Chem. *dron Lett.* **1988,29, 1409.** For tin(I1) enolates, see: (9) Mukaiyama, T.; Suzuki, H.; Yamada, T. *Chem. Lett.* **1986,915.** (h) Yamasaki, N.; Murakami, M.; Mukaiyama, **T.** *Zbid.* **1986,1013.** (i) Yamada, **T.;** Suzuki, H.; Mukaiyama, T. *Zbid.* **1987,293.** For zirconium enolates, see: (i) Iwasaki, G.; Shibasaki, M. *Tetrahedron Lett*. 1987, 28, 3257. For lithium enolates,
see: (k) Ha, D.-C.; Hart, D. J.; Yang, T.-K. *J. Am. Chem. Soc.* 1984, *106*,
4819. (l) Chiba, T.; Nakai, T. *Tetrahedron Lett*. 1985, 26, 4647. (Georg, G. I.; Gill, H. S. J. *Chem.* SOC., *Chem. Commun.* **1985, 1433.** (n) Cainelli, G.; Contento, M.; Giacomini, D.; Panunzio, M. *Tetrahedron Lett.* **1985,26, 937.** *(0)* Hatanaka, M.; Nitta, H. *Zbid.* **1987,28, 69.** For aluminum enolates, see: (p) Iwasaki, G.; Shibasaki, M. *Tetrahedron Lett.*
1987, 28, 3257. (q) Wada, M.; Aiura, H.; Akiba, K. *Ibid.* 1987, 28, 3377.
For zinc enolates, see: (r) Iwasaki, G.; Shibasaki, M. *Tetrahedron Lett.*
 1988, 1376. For silyl enol ethers, see: (u) Ojima, I.; Inaba, S.; Yoshida, K. *Tetrahedron Lett.* **1977, 3643.** (v) Ikeda, K.; Achiwa, **K.;** Sekiya, M. *Zbid.* **1983, 24, 913.**

⁽²⁾ $Hg(OCOCF₃)₂$ was used for the direct synthesis of β -lactams from @-amino thiol esters by Mukaiyama. Unfortunately, this reagent is highly toxic. See: Mukaiyama, T.; Suzuki, H.; Yamada, T. *Chem. Lett.* **1986, 915.** Also tert-butylmagnesium chloride **was used** for the direct synthesis of β -lactams from β -amino thiol esters in our laboratories. This method, 915. Also *tert*-butylmagnesium chloride was used for the direct synthesis of β-lactams from β-amino thiol esters in our laboratories. This method, however, gives β-lactams in rather low yields (e.g. 7 → 8, 23%). See: Shi **3488.**

⁽³⁾ Cu(1)OTf was first prepared by Salomon and Kochi. See: (a) Salomon, R. G.; Kochi, J. K. *J. Am. Chem.* SOC. **1973,** 95, **1889.** For application to organic synthesis, see: (b) Salomon, R. G.; Folting, K.;
Streib, W. E.; Kochi, J. K. J. Am. Chem. Soc. 1974, 96, 1145. (c) Cohen,
T.; Kuhn, D.; Falck, J. R. *Ibid.* 1975, 97, 4749. (d) Cohen, T.; Mura, A.
J. 1976, 41, 3218. (e) Huang, J.; Meinwald, J. *J. Am. Chem. Soc.* 1981, 103, **861.** *(0* Masamune, S.; Hirama, M.; Mori, S.; Ali, S. A.; Garrey, D. S. *Zbid.* **1981,103,1568.** (g) Raychandhuri, S. R.; Ghash, S.; Salomon, R. G. *Ibid.* **1982, 104, 6841.**

Table **I.** Synthesis **of** B-Lactams **from** 8-Amino **Thiol Esters by** Cu(1)OTf

Cu(I)OTf was added over a period of 1 h. ^bCu(I)OTf was added over a period of 0.5 h. ^cCu(I)OTf was added over a period of 0.25 h. dCu(I)OTf was added over a period of **2** h. eDioxane was used as a solvent. *fA* mixture of the products was treated with n-Bu4NF. R Racemic compound was used. h Optically active compound was used.

 β -lactams from β -amino thiol esters. Thus, (\pm) - β -amino thiol ester 1 prepared by the boron enolate-imine condensation reaction was treated with $Cu(I)$ OTf (1.2 equiv) and diisopropylethylamine (2 equiv) in refluxing toluene for 26 h, giving the cis- β -lactam 2 (57%), R_f value 0.33, silica gel plate, AcOEt-hexane (1:6), two developments, and the trans- β -lactam 3 (5%), R_f value 0.39, silica gel plate, AcOEt-hexane (1:6), two developments, together with recovery of the starting β -amino thiol ester 1 (16%) (Scheme I). In order to improve the efficiency of the present reaction many experiments were carried out, and finally we have found that use of $CaCO₃$ (2 molar equiv) instead of diisopropylethylamine provides the satisfactory result, giving only the cis - β -lactam 2 (80%) in a short reaction time.⁴ We then investigated the scope and limitations of the present methodology for the β -lactam synthesis. The results are summarized in Table I^5 As shown

⁽⁴⁾ Use of CaCO₃ gave 2 (27%), 3 (27%), and i (48%), and use of K_2CO_3 afforded 2 (78%) and 3 (4%).

in Table I, all the β -amino thiol esters investigated were transformed into the corresponding β -lactams⁷ in good to excellent yields without any epimerization of an asymmetric carbon, δ thereby making the metal enolate-imine condensation methodology for the β -lactam synthesis more efficient. It is noteworthy that the @-lactams **6** and **16** have been already demonstrated to be useful intermediates for **PS-5, thienamaycin, and** 1β **-methylcarbapenem antibiot**iCs,lb,C,e,f

Occasionally, hydrolysis of β -9-borabicyclo[3.3.1]nonylamino thiol esters, such as **17, 18, 19,** and **20,** formed by the boron enolate-imine condensation reaction, to β amino thiol esters requires rather drastic reaction conditions to result in formation of epimerized β -amino thiol esters.⁹ It was expected that these stable β -9-borabicy-

1987, 52, 3488) we have described (S)-a-methylbenzylamine mistakenly. (7) Authentic samples were prepared according to the literature,^{1c,ie} and their structure was unequivocally determined based on 'H NMR **(270** MHz), IR, and MS spectral data. Furthermore, the structure of the new compounds was determined from 'H NMR **(270** MHz), IR, MS, and HR-MS spectra as described in the supplementary material.

(8) Stereochemical homogeneity was determined from the 'H NMR **(270** MHz) spectrum and the TLC analysis. **(9)** Hydrolysis of a mixture of **17** and **18 (5.81)** with concentrated HCl

clo[3.3.l]nonylamino thiol esters would be also converted to the β -lactams directly without any epimerization just by treatment with Cu(I)OTf. Indeed, the β -9-borabicyclo[3.3.l]nonylamino thiol esters **17, 18,** and **19** purified by silica gel column chromatography were treated with Cu(1)OTf (1.2 equiv) in refluxing toluene, providing **6** (83%),'O **8** (82%),1° and **10 (85%),** respectively." On the other hand, conversion of **20** to **2 (58%)** was best carried out by treatment of $Cu(I)$ OTf (1.2 equiv) and $CaCO₃$ (2 molar equiv) in refluxing dioxane.¹² Thus, a much more efficient method for the synthesis of β -lactams using boron enolates and imines has been established.

It is interesting to note that treatment of **21** with Cu- (I)OTf (1.2 equiv) and $CaCO₃$ (2 molar equiv) in refluxing dioxane for **5** h afforded the alkynylphenyl sulfide **22** in one pot $(55\%)^{13}$ (Scheme III). Since alkynylphenyl sulfides of type **22** are useful intermediates for the synthesis of carbapenems, 14 the present reaction has opened a new and efficient way to carbapenem antibiotics. Although the real mechanism of the above reaction is not clear at present, it appears that the copper acetylide formed by $Cu(I)$ OTf plays a key role.¹⁵

In conclusion, Cu(1)OTf has been found to be an extremely useful reagent for the synthesis of various β -lactams, making the metal enolate-imine condensation reactions for β -lactams much more efficient. Further studies along this line are in progress.

Acknowledgment. Financial support of this project was provided by CIBA-GEIGY Foundation for the Promotion of Science and Takeda Science Foundation.

Supplementary Material Available: Spectral data for compounds **2,3,10, 12,** and **22 (2** pages). Ordering information is given on **any** current masthead page.

(12) The conditions [Cu(I)OTf in refluxing toluene] gave **2 (11%).** On the other hand, the conditions $\lbrack Cu(I)OTf$ and $CaCO₃$ in refluxing toluene] afforded **2 (26%).**

(13) Although the yield **is** not optimized, **5** was **also** converted to ii in one pot **(34%)** under the same reaction conditions.

(14) Maruyama, **H.;** Shiozaki, M.; Oida, *S.;* Hiraoka, T. *Tetrahedron* Lett. **1985,26,4521.** Maruyama, H.; Hiraoka, T. *J. Org. Chem.* 1986,51, **399.**

(15) A suspension *of* iii and CuSPh **(1.2** equiv) in dioxane was refluxed with stirring for **4** h. However, none of iv was formed. On the other hand, a solution of iii, CuSPh **(1.2** equiv) and Cu(1)OTf **(2** equiv) in dioxane was refluxed with stirring for **1** h, affording iv in **53%** yield.

⁽⁵⁾ A general procedure follows. To a stirred suspension of 9 (27.4 mg, 0.0837 mmol) and CaCO₃ (16.8 mg, 0.167 mmol) in toluene (2.3 mL) was gradually added a suspension of Cu(I)OTf (25.2 mg, 0.1004 mmol) in toluene **(1.6** mL) over a period of **0.25** h at refluxing temperature (argon atmosphere). The whole reaction mixture was refluxed with stirring for
an additional 0.25 h, quenched with pH 7 phosphate buffer, extracted
with AcOEt, and concentrated in vacuo. The residual oil was purified
by silica gel mg, **92%) as** a colorless oil.

⁽⁶⁾ Prepared by the condensation reaction of the boron enolate with the imine derived from **3-(trimethylsilyl)-2-propynal** and (R)-a-methylbenzylamine followed by acidic hydrolysis. In the paper *(J. Org. Chem.*

in ether-MeOH **(2.21,25 OC, 5** h) gave the anti isomer and the **syn** isomer in a ratio of **5.21-2.21.** In general, **~-9-borabicyclo[3.3.l]nonylamino** thiol esters are too unstable to be purified by silica gel column chromatography.

⁽¹⁰⁾ A mixture of 6a (20%) and **6 (63%)** was formed, and also a mixture of 8a **(41%)** and 8 **(41%)** was obtained.

⁽¹¹⁾ A general procedure follows. To a stirred solution of **17 (54.7** mg, **0.103** mmol) in toluene **(2.9** mL) was gradually added a suspension of Cu(1)OTf **(30.4** mg, **0.121** "01) in toluene **(1.9 mL)** over a **period** of **0.25** h at refluxing temperature (argon atmosphere). The whole reaction mixture wa refluxed with stirring for an additional **0.33** h, quenched with pH 7 phosphate buffer, extracted with AcOEt, and concentrated in vacuo. (AcOEt-hexane, **1:7)** to give 6a **(6.0** mg, **20%) as** a colorless **oil** and 6 **(14.5** mg, **63%) as** a colorless oil.